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CONSTITUTIVE RELATIONS

FOR FINITE ELASTIC–INELASTIC STRAINS

UDC 539.3A. A. Rogovoi

The evolutionary constitutive elastic-inelastic relation with its compatible objective derivative is de-
rived in general form using the kinematics of superposition of small elastic and inelastic strains on
finite elastic–inelastic strains. The equation is rendered concrete using the elastic law for a slightly
compressible material.

Key words: elastic–inelastic behavior, finite strains, slight compressibility, evolutionary consti-
tutive equations.

1. Preliminary Information. Using three configurations: an initial configuration æ0, a current configu-
ration æ, and an intermediate configuration æ∗ close to the current configuration and employing the kinematics of
superposition of small strains (position gradients) on finite strains, Novokshanov and Rogovoi [1] derived constitutive
equations for finite elastic strains of a simple material relative to the intermediate configuration.

According to the Celerier–Richter theorem or the Noll reduction theorem, the constitutive equation for a
simple material that satisfies the objectivity principle is written as (see [2])

T = R · g̃1(U) · Rt, (1.1)

where T is the true stress tensor; R and U are the orthogonal tensor and the symmetric positive definite pure-strain
tensor in the polar decomposition of the position gradient F = R ·U ; g̃1(U) is the material response to pure strain.
Relation (1.1) can be written in several equivalent forms [1], in particular,

T = J−1F · g̃6 · F t, (1.2)

where J = I3(F ) is the third basic invariant F , which defines the relative volume change; and g̃6 is the material
response function. In [1], the function g̃6 is linked to g̃1 by the relation g̃1 = J−1U · g̃6 · U . For the intermediate
configuration æ∗ close to the current configuration, the constitutive equation (1.2) is written as

T = [1 − I1(e)]T∗ + h · T∗ + T∗ · ht + L̃IV
6 ·· e. (1.3)

Here T∗ is the stress reached in the configuration æ∗ (the initial stress for this configuration), h = (
æ∗∇ u)t is the

gradient (relative to the configuration æ∗ u) of the vector of small displacements that transform the intermediate
configuration to the current configuration, e = (h+ht)/2 is the small-strain tensor relative to the configuration æ∗,
d = (h− ht)/2 is the small-rotation tensor, L̃IV

6 is the fourth-rank tensor (generally, anisotropic) which defines the
elastic response of the material to small strains relative to the intermediate configuration.

The approximate relation (1.3) can be made exact by dividing by the increment in the time of transition from
the intermediate to the current configuration and passing to the limit, i.e., by letting the intermediate configuration
to the current configuration. As a result, we have the evolutionary equation

T Tr = L̃IV
6 ·· ė (1.4)

with the Truesdell objective derivative.
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Fig. 1

The configuration æ∗ is obtained from the current configuration (unknown before the solution of the problem)
by small elastic unloading, and if the process is purely elastic, it coincides with the configuration æ1 attained at
the end of the previous loading step. If the process is elastic–inelastic, the configuration æ∗, as shown in [1], is also
uniquely derived from the known configuration æ1. Using relations (1.3) and (1.4) and considering an elastoplastic
process to be elastic with the reference configuration æ2 obtained from the configuration æ1 by a small plastic
rotation dP , Novokshanov and Rogovoi [1] derived evolutionary constitutive equations for large elastoplastic strains
(finite elastic and finite plastic strains) for an arbitrary elastic law and the associate plastic law. The equations are
defined concretely using as the elastic law a simplified Signorini relation and the Prandtl–Reuss plastic relation.

The procedure of obtaining evolutionary constitutive equations for large elastoplastic strains described in [1]
is a sort of formalization, an algorithm for deriving consistent (with the laws of thermodynamics and the objectivity
principle) equations of state. The goal of the present study is to justify this procedure in deriving constitutive
equations for finite elastic–inelastic (elastoplastic, viscoelastic, and thermoelastic) strains and to concretely define
the obtained relations using the equations for a slightly compressible elastic material.

2. Kinematic Relations. Adhering to the approach described in [1] and based on the superposition of
small strains on finite strains, we write the position gradient as the multiplication of small elastic, small inelastic,
and finite elastic–inelastic strains (see Fig. 1):

F = fE · fIN · F∗. (2.1)

Here the elastic–inelastic position gradient F∗ transforms the initial configuration, in which the position of a point
is specified by the radius-vector r, to the first intermediate configuration æ1. The gradient fIN transforms the
configuration æ1 to the second, also intermediate, configuration æ2, and the gradient fE transforms the configu-
ration æ2 to the current configuration with the radius-vector R. The configurations æ1 and æ2 and the current
configuration are close to each other, which is formalized by the expressions

Ræ2 = Ræ1 + εuIN , R = Ræ2 + εuE, (2.2)

where ε is a small (positive) parameter; uIN and uE are the inelastic and elastic displacement vectors that se-
quentially transform the configuration æ1 to æ2 and the configuration æ2 to the current configuration. From
relations (2.2), we obtain fIN and fE :

fIN = (
æ1∇ Ræ2)

t = g + εhIN = g + ε(eIN + dIN ) = (g + εeIN) · (g + εdIN),

fE = (
æ2∇ R)t = g + εhE = g + ε(eE + dE) = (g + εeE) · (g + εdE).
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Here g is a unit tensor, eIN and dIN are the symmetric (small inelastic strains) and skew-symmetric (small inelastic

rotations) parts of the tensor hIN = (
æ1∇ uIN )t, and eE and dE are the symmetric (small elastic strains) and

skew-symmetric (small elastic rotations) parts of the tensor

εhE = ε(
æ2∇ uE)t = ε(f−

IN
t · æ1∇ uE)t = ε(

æ1∇ uE)t.

From these expressions, it follows that the configurations æ1 and æ2 are indistinguishable (with accuracy up to a
linear representation in ε):

fE · fIN = fIN · fE = g + ε(e + d) = (g + εe) · (g + εd) = (g + εd) · (g + εe),

where e = eE + eIN is the total small strain and d = dE + dIN is the total small rotation. As a result, relation (2.1)
becomes

F = (g + εh) · F∗ = [g + ε(eE + eIN + dE + dIN )] · F∗. (2.3)

Here h = hE + hIN . The approximate relations (2.3) (which were obtained retaining only terms linear in ε) are
easily made exact. Taking into account that F − F∗ = ∆F is the position-gradient increment and εu = ∆u is
the displacement increment, we divide the first equation in relation (2.3) by ∆t (the time of transition from

the intermediate to the current configuration) and let the former to the latter (in this case,
æ1∇ tends to ∇̃ (the

Hamiltonian in the current configuration). Finally, taking into account that (∇̃v)t = Ḟ · F−1 is the displacement
rate), we obtain an identity. Similarly, passing to the limit in the second equation of (2.3), we have

Ḟ = (DE + DIN + WE + WIN ) · F = P · F + Q · F.

Here DE = ėE, DIN = ėIN are the deformations of the elastic and inelastic displacement rates) (which in this case
coincide with the corresponding strain rates); WE = ḋE , WIN = ḋIN are the elastic and inelastic vorticity tensors;
P and Q are arbitrary smooth tensor functions that satisfy the condition P +Q = A (A = DE +DIN +WE +WIN).

The solution of the tensor equation (see [3])

Ḟ = P (t) · F (t) + Q(t) · F (t) (2.4)

for F (t = 0) = g is the tensor (matriciant)

F t
0(A) = F t

0(P ) · F t
0(S), S = [F t

0(P )]−1 · Q · F t
0(P ), (2.5)

where F t
0(P ) and F t

0(S) are the solutions of Eq. (2.4) with right sides P and S (multiplied by F ), respectively, with
the same initial conditions, which is easy to verify by simple substitution. In solution (2.5), each of the matriciants
is given by an expression of the form

F t
0(A) = (g + A(τ)∆t) · F t∗

0 (A), ∆t = t − t∗, τ ∈ (t∗, t). (2.6)

In a recursive extension, this is a product integral, which leads to a multiplicative integral in the limit ∆t → 0 [3].
Let us show that relations (2.5) and (2.3) are equivalent. Because F (t) is F t

0(A), P + Q = A, taking into
account the expression for the tensor S, using representation (2.6) for the matriciants, and retaining terms of only
the first order of smallness in ∆t, we reduce relation (2.5) to the form

(g + A(τ)∆t) · F∗ = (g + A(τ)∆t) · F t∗
0 (P ) · F t∗

0 (S).

From this, F∗ = F t∗
0 (P ) · F t∗

0 (S), which should be the case according to relation (2.5), and A(τ)∆t = ε(eE + eIN

+ dE + dIN ).
Thus, choosing arbitrary smooth tensor functions P and Q with the specified sum, we obtain various multi-

plicative decompositions of the position gradient F . We set P = DE + WE . Then, according to (2.6), we have

F t
0(P ) = [g + ε(eE + dE)] · F t∗

0 (P ).

The last expression contains only elastic kinematics. Therefore, it is reasonable to introduce the notation F t
0(P )

= FE and the term the elastic position gradient:

FE = [g + ε(eE + dE)] · FE∗. (2.7)
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The tensor Q is determined by choosing the tensor P : Q = DIN + WIN . Then, using the second relation in (2.5),
we obtain the tensor S, and, in accordance with (2.6), retaining terms only the first order of smallness in ∆t or ε,
we construct the tensor F t

0(S), which will be called the inelastic position gradient and denoted by FIN :

FIN = [g + εF−1
E∗ · (eIN + dIN ) · FE∗] · FIN∗. (2.8)

As a result, from the first relation of (2.5), we obtain the representation F = FE ·FIN , which coincides in form with
the well-known Lee decomposition but is free from the disadvantages of the latter. In particular, this representation
implies that the total deformation of the displacement rate is the sum of the elastic and inelastic rate deformations
and that the elastic position gradient does not vary for purely inelastic changes in the configuration.

The first statement follows from the following chain of relations. As is known, l = (∇̃v)t = Ḟ · F−1. Then,
l = ḞE · F−1

E + FE · ḞIN · F−1
IN · F−1

E . From this, using the relations ḞE = (DE + WE) · FE and ḞIN = F−1
E · (DIN

+ WIN ) · FE · FIN , which follow from expressions (2.7) and (2.8), we obtain l = DE + WE + DIN + WIN . Taking
into account that the tensors D are symmetric and W are skew-symmetric, we have D = (l + lt)/2 = DE + DIN .

To prove the second statement, we write the representation F as the multiplication of FE and FIN in terms
of the corresponding Hamiltonian and radius-vectors in the well-known form

F = FE · FIN = (
IN

∇ R)t · (∇RIN )t = RiR
i
IN · (RIN )jr

j = Rir
i. (2.9)

Here the radius-vectors R and RIN define the current and inelastic configurations,
IN

∇ and ∇ are the Hamiltonians
with respect to the inelastic and initial configurations, respectively, Ri, Ri, (RIN )i, Ri

IN , ri, and ri are the vectors
of the principal and mutual bases of the current, inelastic, and initial configurations, respectively. According to (2.7),
the elastic position gradient does not vary for purely inelastic changes in the configuration. From expressions (2.9)
it follows that

FE = (
IN

∇ R)t = RiR
i
IN ,

where and R, and
IN

∇ , and hence, Ri and Ri
IN , depend on plastic kinematics. Let us show that in this case there

is no inconsistency.
The constancy of FE for inelastic changes in the configuration is defined by the relation ḞE = ṘiR

i
IN

+RiṘ
i
IN = 0. From this it follows that Ri · Ṙi = Ri

IN · (ṘIN )i. Taking into account that the position of a point in
the current configuration R is determined by its position in the previous close configuration R∗ and by the vector
of small inelastic displacements) εuIN (R = R∗ + εuIN), we have Ṙi = ∂vIN/∂qi, where vIN = u̇IN and qi are
generalized coordinates. As a result, we arrive at the following condition of constancy of the elastic position gradient

for inelastic changes in the configuration: ∇̃ · vIN =
IN

∇ ·ṘIN .
Let us consider the factor in the square brackets in relation (2.8). This expression is the gradient of the

vector RIN relative to the intermediate inelastic configuration defined by the vector RIN∗ and close to the current
inelastic configuration:

IN∗
∇ RIN =

IN∗
∇ (RIN∗ + εϕ) = g + ε

IN∗
∇ ϕ,

where εϕ is a small change in the plastic configuration. From this

ε
IN∗
∇ ϕ = εF−1

E∗ · hIN · FE∗.

Since hIN = (
∗
∇uIN )t is the gradient of the vector of small inelastic displacements relative to the elastic–inelastic

intermediate configuration [configuration æ1 in relation (2.3)] which is close to the current configuration, we have

hIN · FE∗ = (
IN∗
∇ uIN)t. Then,

ε
IN∗
∇ ϕ = εF−1

E∗ · ( IN∗
∇ uIN)t.

Dividing the last relation by the increment in the time of the small inelastic process ∆t and passing to the limit

∆t → 0, we obtain the equality
IN

∇ ṘIN = F−1
E · (IN

∇ vIN )t, whose first invariant coincides with the above condition
of independence of the elastic position gradient on plastic kinematics. Thus, relation (2.8) defines the variable
inelastic configuration (the radius-vector RIN ) relative to which the gradient of the vector R changed due to
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inelastic displacements remains constant. Of course, this elastic gradient can be written in any basis, including, for
example, the variable basis included in relation (2.9).

Thus, using expressions (2.1) or (2.3), which and only which define the true history of deformation, we
obtained a multiplicative decomposition of the total position gradient into an elastic gradient and an inelastic
gradient, which coincides in shape with the well-known Lee decomposition but has a completely different nature.
Naturally, the thus obtained elastic and inelastic position gradients [relations (2.7) and (2.8)] mirror the true history
of deformation: the substitution of the expressions of these gradients into the right side of the Lee decomposition
yields relations (2.1) or (2.3).

In some cases, it is useful to treat the representation F in the form of the multiplication FE and FIN as
a series connection of an elastic and an inelastic element, using the nomenclature of structural modeling. Indeed,
within the framework of small strains (FE∗ = FIN∗ = g), relations (2.7) and (2.8) imply that the total strain and
the total rotation are equal to the sum of elastic and inelastic quantities, which corresponds to a series connection
of an elastic and an inelastic elements.

The correct isolation of the purely elastic term from the elastic–inelastic position gradient performed here
will be needed to us to construct constitutive equations for the elastic–inelastic behavior of the material at finite
strains. We shall also need the Cauchy–Green strain measure C = F t · F , which, taking into account expressions
(2.3) and (2.5) is written as

C = F t
IN · CE · FIN = C∗ + 2 εF t

∗ · (eE + eIN) · F∗, (2.10)

where F∗ = FE∗ · FIN∗.
3. Constitutive Equation. Any elastic–inelastic process that results in the current configuration æ is

treated as an elastic process from the strained configuration æ2 close to the current configuration (see Fig. 1).
The closeness is due to the possibility of using relation (1.3) as the constitutive elastic equation, which admits a
convenient treatment related to the terms containing the stress T∗ corresponding to the position gradient F∗. These
terms completely determine the transformation of the stress T∗ upon superimposition of the position gradient f

on F∗, i.e., the rotation of this stress and its changes due to a change in the current elementary area. Indeed,
the oriented elementary areas in the current and intermediate configurations are linked by the well-known relation
(see [1]) J−1

f N · f dS = N∗ dS∗, where Jf = I3(f) = 1 + εI1(e) and N dS and N∗ dS∗ are the oriented elementary
areas in the current and intermediate (æ2) configurations. Setting the strain corresponding to the stress T∗ in the
intermediate configuration equal to the strain in the current configuration, we obtain the symmetric stress tensor
J−1

f f · T∗ · f t for the latter. Substituting the expressions for Jf and f into the above relation and retaining only
terms linear in ε, we arrive at the relation [1−I1(e)]T∗+h ·T∗ +T∗ ·ht, in which, taking into account that h = e+d,
it is possible to distinguish terms that are due only to the rotation and variation in the value of the area.

Let us consider the transition from the configuration æ1 to the current configuration æ (see Fig. 1). The
configuration æ1 corresponds to the accumulated stress state Tæ1 . The gradient fIN transforms the configuration æ1

with this stress state to the configuration æ2 by rotating the tensor Tæ1 by means of dIN and converting it to the
new current area by means of eIN (path 1 in Fig. 1). As a result, the stress state in the configuration æ2 is given
by the relation

Tæ2 = [1 − εI1(eIN )]Tæ1 + εhIN · Tæ1 + εTæ1 · ht
IN . (3.1)

The stress Tæ2 is the initial one for the kinematics defined by the elastic position gradient fE ; therefore, according
to the constitutive equation (1.3), the true stress tensor is written as

T = [1 − εI1(eE)] Tæ2 + εhE · Tæ2 + εTæ2 · ht
E + εL̃IV

6 ·· eE , (3.2)

where L̃IV
6 defines the material response to small elastic strains eE relative to the configuration æ2. Substituting

expression (3.1) into relation (3.2) and retaining only terms linear in ε, we arrive at the equation

T = [1 − εI1(e)] Tæ1 + εh · Tæ1 + εTæ1 · ht + εL̃IV
6 ·· eE , (3.3)

where e = eE+eIN and h = hE +hIN are the total small strain and the total displacement gradient for the transition
from the configuration æ1 [with stress Tæ1 (below T∗) accumulated in it] to the current configuration. [We note
that relation (3.3) can be obtained following path 2 (see Fig. 1), i.e., by first performing a small elastic process and
then a small inelastic process, as follows from the above equality fE · fIN = fIN · fE .] Because eE = e − eIN , it
follows that
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T = [1 − εI1(e)]T∗ + εh · T∗ + εT∗ · ht + εL̃IV
6 ·· (e − eIN ). (3.4)

The approximate equation (3.4) can be reduced an exact (differential and evolutionary) equation by dividing
it by the increment in the time of transition from the configuration æ1 to the actual configuration and letting the
intermediate configurations to the current configuration (æ1 → æ2 → æ). As a result, we have

T Tr = L̃IV
6 ·· (ė − ėIN ), (3.5)

where T Tr ≡ Ṫ − ḣ · T − T · ḣt + I1(ė)T is the resulting Truesdell objective derivative, ḣ ≡ (∇̃v)t, and ė ≡ D (D is
the tensor of the total-displacement rate deformation). The arguments of the fourth-rank tensor L̃IV

6 in (3.5) are
the same kinematic quantities as in relation (3.4) but they are in the current rather than intermediate configuration.
As a result, introducing the equation of state for ėIN , we obtain an evolutionary constitutive equation written in
terms of the true stress, the stress rate, the total-displacement rate deformation, and the elastic kinematics defining
the tensor L̃IV

6 . Let us construct a particular expression for this tensor.
4. Elastic Potential. We consider a purely elastic material whose behavior is determined by purely elastic

kinematics. (Below, for simplicity, we omit the subscript E at all kinematic quantities, assuming that they are
elastic.)

The true stress tensor is written in terms of the Piola–Kirchhoff tensor of the second order as T

= J−1F · PII · F t. A comparison of this expression with relation (1.2) shows that g̃6(U) = PII . The tensor PII is
defined in elastic theory using the elastic potential W , which depends, as a rule, on the Cauchy–Green elastic-strain
measure C = F t ·F : PII = 2 (∂W/∂C). Using the well-known rules of differentiation of tensor functions of a tensor
argument with respect to the tensor argument [4], we have

dPII =
∂PII

∂C
·· dC =

∂PII

∂C
·· (2F t · de · F ) = 2

(
F

3◦ ∂PII

∂C
· F t

)
·· de.

Here we took into account that according to relation (2.10) (in which FIN = g and eIN = 0), in the limit (letting

the intermediate configuration to the current configuration), we have dC = 2F t · de · F . The expression A
3◦BIV

denotes positional multiplication, i.e., the scalar premultiplication of the second-rank tensor A by the third basis
vector of the fourth-rank tensor BIV . Now, using the representation of PII in terms of the elastic potential, we
obtain

PII = 4
∫

et
0

(
F

3◦ ∂2W

∂C2
· F t

)
·· de = 4

t∫

0

(
F

3◦ ∂2W

∂C2
· F t

)
·· D dτ. (4.1)

Here et
0 is the history of the tensor e, and all integrands in the last integral are functions of time τ

Similarly,

dW =
∂W

∂C
·· dC =

∂W

∂C
·· (2F t · de · F ) = 2

(
F · ∂W

∂C
· F t

)
·· de = (F · PII · F t) ·· de.

From this,

W =
∫

et
0

(F · PII · F t ·· de =
1
2

∫

Ct
0

PII ·· dC, (4.2)

where Ct
0 is the history of the tensor C, or, taking into account (4.1), we have

W = 4
∫

et
0

{
F ·

[ ∫

et
0

(
F

3◦ ∂2W

∂C2
· F t

)
·· de

]
· F t

}
·· de = 2

∫

Ct
0

[ ∫

et
0

(
F

3◦ ∂2W

∂C2
· F t

)
·· de

]
·· dC

= 4

t∫

0

{
F ·

[ τ1∫

0

(
F

3◦ ∂2W

∂C2
· F t

)
·· D dτ2

]
· F t

}
·· D dτ1. (4.3)

The last equality in (4.3) implies that

dW

dt
= PII ·· (F t · D · F ) = JT ·· D.
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Taking into account that D dt = de and 2F t · de · F = dC, we obtain the relations PII = 2 (∂W/∂C) and T

= J−1 (∂W/∂e). The last expressions also follow from the other equalities in (4.2) and (4.3). Determining the
second derivative with respect to C from the second equality in (4.3), we obtain an identity. This form of the elastic
potential allows it to be extended to an elastic–inelastic process.

As follows from relation (4.1), the fourth-rank tensor ∂2W/∂C2 defines the properties of the material at
the current time relative to the basis of the initial configuration and its response (stress referred to the initial
configuration) to an infinitesimal increment of the Cauchy–Green strain measure. The tensor F simply transforms
the last two basis vectors of this fourth-rank tensor to the current-configuration vectors, to which the tensor de is
referred. Let us model an elastic–inelastic process using a series connection of an elastic and an inelastic elements
whose kinematics is given by relations (2.7) and (2.8), respectively; the kinematics of the entire assembly is defined
by (2.5). For this connection of elements, the true stresses in them are identical and equal to the total stress of the
entire assembly. The increment of these stresses is determined by the properties of the elastic element, i.e., by the
fourth-rank tensor ∂2W (CE)/∂C2

E , and the elastic-strain increment. Therefore, a natural extension of relations (4.1)
and (4.3) to the elastic–inelastic process are the relations

PII = 4

t∫

0

(
F

3◦ ∂2W

∂C2
E

· F t
)
·· DE dτ ; (4.4)

W1 = 4

t∫

0

{
F ·

[ τ1∫

0

(
F

3◦ ∂2W

∂C2
E

· F t
)
·· DE dτ2

]
· F t

}
·· DE dτ1, (4.5)

where F is the total elastic–inelastic position gradient and W is the elastic potential that depends only on the
elastic kinematics defined by expression (2.7). These relations imply that

JT ·· DE =
dW1

dt
= 4

{
F ·

[ t∫

0

(
F

3◦ ∂2W

∂C2
E

· F t
)
·· DE dτ

]
· F t

}
·· DE . (4.6)

From this, we have

T = 4J−1F ·
[ t∫

0

(
F

3◦ ∂2W

∂C2
E

· F t
)
·· DE dτ

]
· F t.

The last integral can be written as the sum of two integrals: the first from 0 to t∗, which, according to (4.4), is PII∗,
and the second from t∗ to t, where t − t∗ = ∆t is a small finite quantity; therefore, it can be approximated by the
expression

(
F∗

3◦ ∂2W

∂C2
E

∣∣∣
CE=CE∗

· F t
∗
)
·· εeE .

Here and below, the quantities with the subscript “∗” refer to the time t∗. Now, taking into account relation (2.3)
for F and the representation J = J∗(1 + εI1(e)) for the Jacobian [whence J−1 = J−1

∗ (1 − εI1(e))] [1] and retaining
only terms linear in ε, we arrive at the constitutive equation (3.3) with the particular expression for: L̃IV

6 :

L̃IV
6 = 4J−1

∗ F∗ ·
(
F∗

3◦ ∂2W

∂C2
E

∣∣∣
CE=CE∗

2∗F t
∗
)
· F t

∗ , (4.7)

where BIV 2∗A denotes the scalar multiplication of the second-rank tensor A by the second basis vector of the
fourth-rank tensor BIV .

5. Elastic Potential W of a Slightly Compressible Material. Since the potential W in (4.4)–(4.7)
depends on the only elastic strain measure, we omit the subscript E in the notation of kinematic quantities at the
beginning of this section.

Elastomers, i.e., materials that can be deformed to large elastic strains, exhibit slight compressibility and
are considered incompressible under normal conditions. This approximation is adopted by most researchers and is
quite correct for materials operating under ordinary (not extreme) conditions, i.e., at a low hydrostatic pressure
[5–7]. In modern engineering facilities, elastomers operate under extreme conditions at high hydrostatic pressures
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due, in particular, to temperature fields, and neglect of the slight compressibility of the material leads to unrealistic
results. The theory of finite elastic strains of an initially isotropic, slightly compressible material developed in [8] is
based on a series expansion of the elastic potential W in the third principal invariant of the Cauchy–Green strain
measure C in the neighborhood of unity with retention of only terms not higher than quadratic terms (by virtue of
the slight compressibility of the material):

W (I1, I2, I3) = Ŵ (I1, I2) + χ1(I3 − 1) + (1/2)χ2(I3 − 1)2,

Ŵ (I1, I2) = W (I1, I2, 1), χ1(I1, I2) =
∂W

∂I3

∣∣∣
I3=1

, χ2(I1, I2) =
∂2W

∂I2
3

∣∣∣
I3=1

.

Here Ii = Ii(C) (i = 1, 2, 3) are the principal invariants of the measure C. This introduces four generalized elastic
moduli, one of which defines the compressibility (incompressibility) of the material.

The theory is further developed in studies of [9–11], which take into account the experimentally observed
variation in the bulk modulus and shear modulus due to volume variation and demonstrate the associated effects, in
particular, the untwisting and stretching of the previously wound and axially compressed outer surface of a hollow
cylinder by supplying internal pressure. For finite strains, the expressions defining the shear modulus and the bulk
modulus depend on the particular problem, i.e., they are different for different problems (as is described in [8, 9]).
This is not surprising since the hydrostatics for finite strains is determined by both volume and shape variations,
and, vice versa, the volume variation is determined by both the spherical and deviator parts of the stress tensor.
In this connection, the terms the bulk modulus and the shear modulus are purely conditional and terminologically
convenient, but they should necessarily be assigned to a particular problem; therefore, they are placed in quotations.

The constitutive relation obtained and used in [9–11] has the form

1
2

PII =
∂W

∂C
= (g − I3C

−1)c1 + (I1g − C − 2I3C
−1)c2 + σI3C

−1,

α(σ − χ1) = I3 − 1, α = 1/χ2, (5.1)

ci(Î1, Î2, I3) = ki + pi(I3 − 1) + (1/2)qi(I3 − 1)2,

ki(Î1, Î2) =
∂Ŵ

∂Îi

, pi(Î1, Î2) =
∂χ1

∂Îi

, qi(Î1, Î2) =
∂χ2

∂Îi

(i = 1, 2).

Here

Î1 = I1 − (I3 − 1), Î2 = I2 − 2(I3 − 1), Î3 = I3 (5.2)

are the invariants introduced in [12]. Furthermore,

χ1(Î1, Î2)
∣∣∣
C=g

= 0, 2(k1 + k2)
∣∣∣
C=g

= G0,

4
(
χ2 − 2(k1 + k2)

3

)∣∣∣
C=g

= B0,
χ2 − (k1 + k2)
2χ2 − (k1 + k2)

∣∣∣
C=g

= ν0,

where G0, B0, and ν0 are the shear modulus, the bulk modulus, and Poisson’s ratio of the linear theory of elasticity.
In order that the constitutive equations be energetically permissible [13], the following equalities should be satisfied:

∂k1

∂Î2

=
∂k2

∂Î1

,
∂p1

∂Î2

=
∂p2

∂Î1

,
∂q1

∂Î2

=
∂q2

∂Î1

.

In [9–11], Ŵ , χ1, and χ2 were specified by the elementary expressions

Ŵ = k1(Î1 − 3) + k2(Î2 − 3), χ1 = p1(Î1 − 3) + p2(Î2 − 3),

χ2 = χ20 + q1(Î1 − 3) + q2(Î2 − 3) = χ20(1 + Q1(Î1 − 3) + Q2(Î2 − 3)), Qi = qi/χ20

(k1, k2, p1, p2, q1, q2, χ20 are constants),

which nevertheless revealed the effect related to the slight elastic compressibility of the material.
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From relations (5.1), it is easy to obtain the following expression for ∂2W/∂C2 taking into account that (see
[4, 13])

∂I1

∂C
= g,

∂I2

∂C
= I1g − C,

∂I3

∂C
= I3C

−1,

∂C

∂C
= CIV

II ,
∂C−1

∂C
= −C−1 · CIV

II

2∗C−1.

Here CIV
II is the second isotropic tensor of the fourth rank. As a result, taking into account (4.7) and again denoting

the purely elastic quantities by the subscript E, we obtain

L̃IV
6 ·· eE = 4J−1

∗ {(c1 − σ∗)I3E∗[Y · eE · Y − Y (Y ·· eE)]

+ I3E∗[Y (Φ∗ ·· eE) + (Φ∗ − 2I3E∗Y )(Y ·· eE)][p1 + q1(I3E∗ − 1)]

+ [Φ∗(Φ∗ ·· eE) − Φ∗ · eE · Φ∗ + 2I3E∗(Y · eE · Y − (Y ·· eE)Y ]c2

+ I3E∗[I1E∗Y (Φ∗ ·· eE) − Y (X ·· eE) + (I1E∗Φ∗ − X − 4I3E∗Y )(Y ·· eE)][p2 + q2(I3E∗ − 1)]

+ I2
3E∗[χ20 + q1(Î1E∗ − 3) + q2(Î2E∗ − 3)]Y (Y ·· eE)}. (5.3)

Here ci = ki + pi(I3E∗ − 1) + (1/2)qi(I3E∗ − 1)2 (i = 1, 2), σ∗ is given by the relation

α0
σ∗ − p1(Î1E∗ − 3) − p2(Î2E∗ − 3)
1 + Q1(Î1E∗ − 3) + Q2(Î2E∗ − 3)

= I3E∗ − 1, α0 =
1

χ20
, (5.4)

Î1E , Î2E are defined by relations (5.2), Y = F∗ · C−1
E∗ · F t

∗ , X = F∗ · CE∗ · F t
∗ , and Φ∗ = F∗ · F t

∗ is the Finger strain
measure tensor, whose invariants coincide with the corresponding invariants of the tensor C∗. All quantities with
the subscript “∗” are referred to the attained intermediate configuration æ1 and are therefore known. In relations
(5.3), representing the small elastic strains as the difference of small total and inelastic strains (for the latter, one
needs to write their particular equations of state, some of which are given in Sec. 4), we complete the derivation
of the constitutive equation (3.4), which describes elastic–inelastic material behavior at finite strains, finite elastic
(slightly compressible materials), and inelastic strains. The total kinematics present in relations (3.4) and (5.3) is
defined by expression (2.3), and the elastic kinematics in (5.3) and (5.4) by expression (2.7).

Conclusions. In the kinematics of an elastic–inelastic process, purely elastic kinematics independent of
inelastic changes in the strain configuration was distinguished. An evolutionary equation (with the resulting objec-
tive derivative) for the behavior of complex media at finite strains was derived treating an elastic–inelastic process
as an elastic process from a uniquely determined stressed configuration close to the current configuration. The
procedure of deriving the equation is easily formalized and was used to construct the constitutive relations of
elastoplasticity [1], viscoelasticity, and thermoelasticity [14, 15] at finite strains.

This work was performed under the Program of the Department of Power Engineering, Engineering, Me-
chanics, and Control Processes of Russian Academy of Sciences (2003, 2004) and the integration Program of Ural
Division, Siberian Division, and Far East Division of the Russian Academy of Sciences (2003, 2004) and supported
by the Russian Foundation for Basic Research (Grant No. 03-01-00554).
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